#### WHAT MAKES THE BEST COKE GEYSER?





# anna Jessica Martyna Rhoda Hazzel

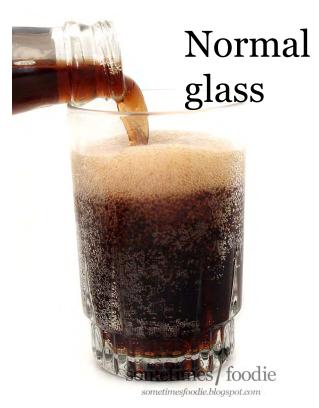
Experiment 1: Does it have to be Mentos or can we use any sweets?

- Half fill 4 boiling tubes with Diet Coke
- TILT THE BOILING TUBE AS YOU POUR SLOWLY
- Drop one of the test sweets into a tube and watch what happens.
- Record the amount of fizz

Independent variable = type of sweet

Dependent variable = amount of fizz

Control variable = volume of diet coke


| Type of sweet             | Amount of fizz<br>(a lot, a little, none) |
|---------------------------|-------------------------------------------|
| Mint Mentos               | a lot                                     |
| Fruit flavoured<br>Mentos | a lot                                     |
| Opal fruit<br>Opal Fruits | none                                      |
| Polo                      | a little                                  |

• Opal fruit sweets and Polos were not as good as Mentos sweets at producing fizz.

### How does the coke and Mentos trick work?



#### Do try this at home!





#### Glass coated with oil



### Experiment 2: Does it have to be a sweet?

<u>Method</u>

- Half fill 5 boiling tubes with Diet Coke
- TILT THE BOILING TUBE AS YOU POUR SLOWLY
- Drop one substance into one tube at a time and watch what happens.
- Record amount of fizz

Independent variable = type of substance

Dependent variable = amount of fizz

Control variable = volume of diet coke

| Type of substance                         |                                           |
|-------------------------------------------|-------------------------------------------|
| Type of substance                         | Amount of fizz<br>(a lot, a little, none) |
| Sugar cube                                | a lot                                     |
| Small piece of Sedimentary rock           | a little                                  |
| A marble                                  | none                                      |
| A level teaspoon of coarse salt crystals  | a lot                                     |
| A level teaspoon of anti-bumping granules | a lot                                     |

• Sugar, salt and anti-bumping granules produced a lot of fizz.

### Experiment 3: Does it have to be diet coke?

- Half fill 5 boiling tubes with different drinks
- TILT THE BOILING TUBE AS YOU POUR SLOWLY
- Drop one Mint Mentos into one tube at a time and record amount of fizz

Independent variable = type of drink

**Dependent variable = amount of fizz** 

Control variable = volume of drink and type of sweet

| Type of drink  | Amount of fizz<br>(a lot, a little, none) |
|----------------|-------------------------------------------|
| Diet Coke      | a lot                                     |
| Still water    | none                                      |
| Fizzy lemonade | a lot                                     |
| Coke Classic   | a lot                                     |
| Perrier water  | a little                                  |

• Still and fizzy water were not good at producing fizz as coke and lemonade

### Experiment 4: Does surface area make a difference?

- Add 200 cm<sup>3</sup> of diet coke to a conical flask
- Drop one Mint Mentos
- Measure amount of gas produced
- Repeat with crushed Mint Mentos

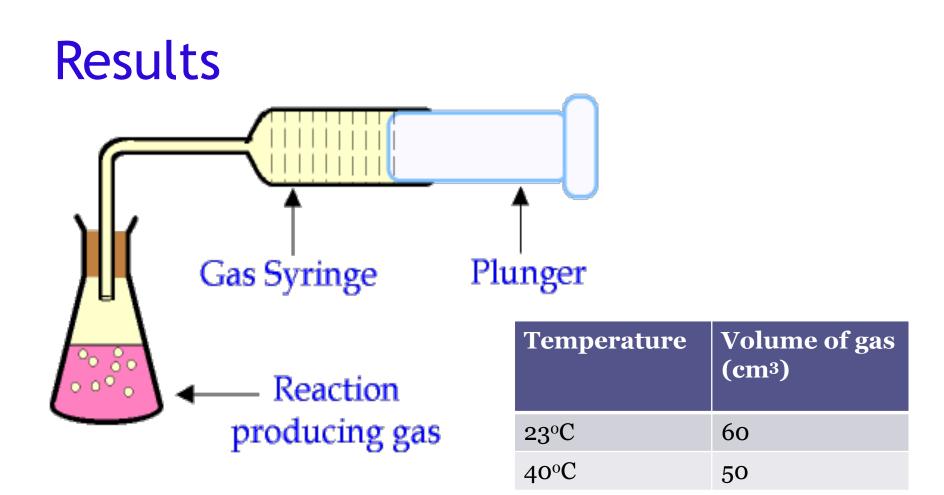
Independent variable = surface area of Mentos sweet

Dependent variable = amount of gas

Control variable = volume of diet coke



- Crushing the Mentos sweets did not increase the amount of gas produced.
- This is probably because the crushed sweets did not fall into the coke quickly compared to the whole Mentos.


### Experiment 5: Does temperature make a difference?

- Add 200 cm<sup>3</sup> of diet coke to a conical flask
- Drop one Mint Mentos
- Measure amount of gas produced
- Repeat with warmed up coke (40°C)

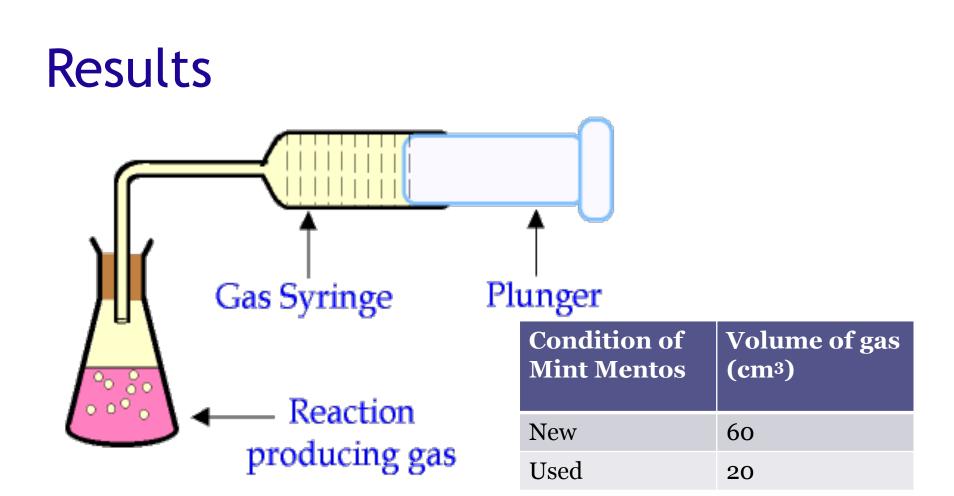
Independent variable = temperature

Dependent variable = amount of gas

Control variable = volume of diet coke



- Warming the diet coke did not increase the amount of gas produced.
- This is probably because some of the dissolved CO<sub>2</sub> escaped when the coke was warmed up


### Experiment 6: Can you reuse the Mint Mentos sweet?

- Add 200 cm<sup>3</sup> of diet coke to a conical flask
- Drop one Mint Mentos
- Measure amount of gas produced
- Repeat with used Mint Mentos sweet

Independent variable = condition of Mint Mentos

Dependent variable = amount of gas

Control variable = volume of diet coke



- A new Mint Mentos sweet worked much better than a used sweet
- This is probably because the outside of the sweet dissolves very quickly

#### **Decision time**

• From the results of our experiments we decided that to continue with Diet Coke (less sticky) and new Mint Mentos each time

### Final plan

#### Cost ££££

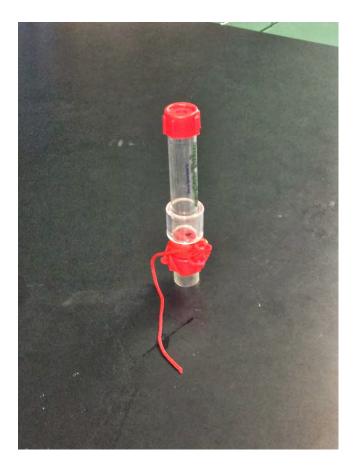
#### Mess

- Large bottle of diet coke (£1.98 per bottle)
- Small bottle of diet coke (£1-1.25 per bottle)
- Packet of Mint Mentos (£0.85)

- Large bottle (big mess)
- Small bottle (small mess)

We decided to continue with small bottles of coke and Mint Mentos as it was less expensive and there was a smaller mess to clean up.

## Experiment 7: How many sweets do you need?


- Take a small bottle of Diet Coke
- Drop one Mint Mentos
- Measure height of geyser
- Repeat with 2-7 Mint Mentos sweets

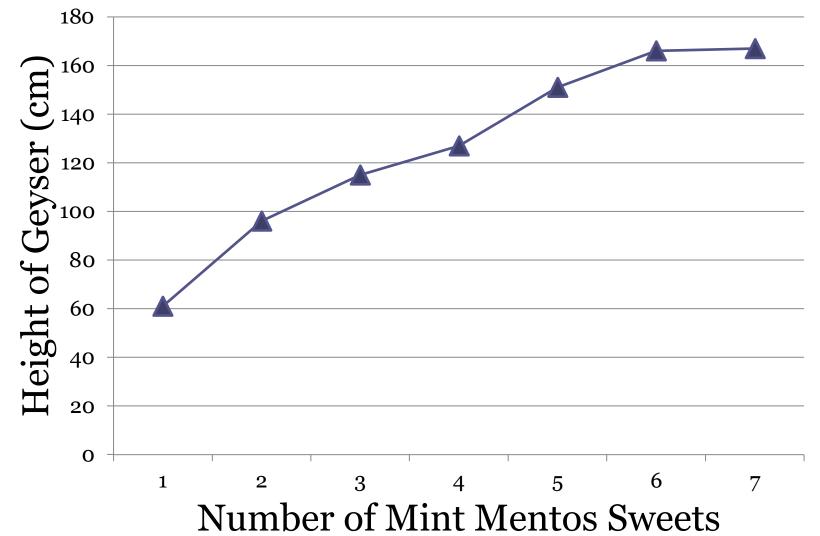
Independent variable = number of Mint Mentos

Dependent variable = height of geyser and volume of coke left in the bottle

Control variable = volume of diet coke  $(250 \text{ cm}^3)$ 

#### Mentos dispenser



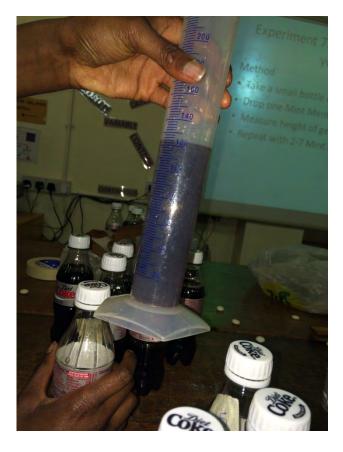

We used a mentos dispenser in order to drop our mentos into the bottle quickly

#### Coke geysers!



| The effect of Mentos on height of geyser?<br>Odd or anomalous results were left out |                     |                 |                 |         |  |  |
|-------------------------------------------------------------------------------------|---------------------|-----------------|-----------------|---------|--|--|
| Number of                                                                           | Height of fizz (cm) |                 |                 |         |  |  |
| Mentos                                                                              |                     |                 |                 |         |  |  |
|                                                                                     | 1                   | 2               | 3               | average |  |  |
| 1                                                                                   | 63                  | 59              | <mark>40</mark> | 61      |  |  |
| 2                                                                                   | 97                  | 95              | <mark>47</mark> | 96      |  |  |
| 3                                                                                   | 110                 | <mark>65</mark> | 120             | 115     |  |  |
| 4                                                                                   | 115                 | 129             | 137             | 127     |  |  |
| 5                                                                                   | 136                 | 149             | 167             | 151     |  |  |
| 6                                                                                   | 168                 | 159             | 170             | 166     |  |  |
| 7                                                                                   | <mark>121</mark>    | 170             | 164             | 167     |  |  |

## Effect of number of sweets on height of geyser

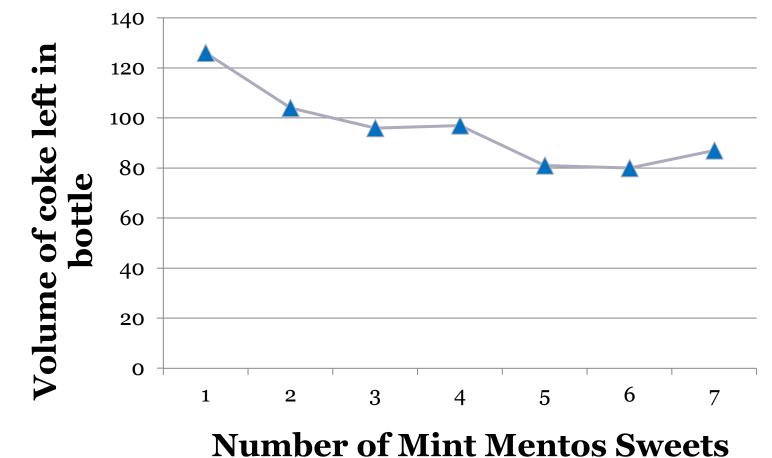



- The height of the coke geyser increased when the number of sweets were increased up to 6.
- There was no difference between 6 and 7 sweets.

#### How much coke is left in the bottle?

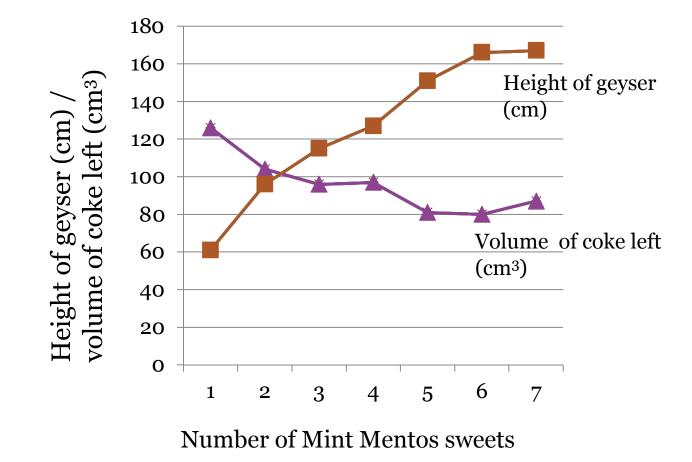


#### Measuring the coke left in the bottle






The effect of Mentos on volume of coke left? Odd or anomalous results were left out.


| Number of<br>Mentos | Volume of coke left (cm <sup>3</sup> ) |     |     |         |
|---------------------|----------------------------------------|-----|-----|---------|
|                     | 1                                      | 2   | 3   | average |
| 1                   | 124                                    | 128 | 126 | 126     |
| 2                   | 106                                    | 102 | 119 | 104     |
| 3                   | 100                                    | 90  | 98  | 96      |
| 4                   | 93                                     | 102 | 96  | 97      |
| 5                   | 82                                     | 92  | 80  | 81      |
| 6                   | 78                                     | 82  | 80  | 80      |
| 7                   | 106                                    | 84  | 82  | 83      |

# Effect of number of sweets on amount of coke left in the bottle



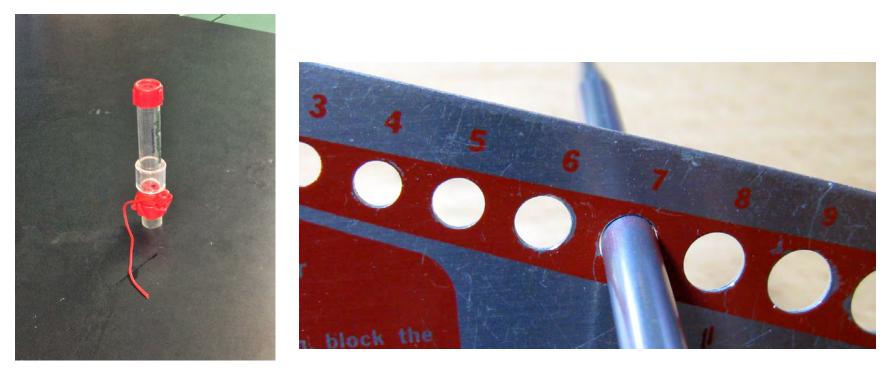
- The amount of coke left decreased when the number of sweets were increased up to 5.
- There was no further decrease when the number of sweets was increased to 6 and 7 sweets.

#### Is there a correlation?



- The amount of coke that was left did not show an absolute correlation with the height of geyser.
- The speed with which the gas is produced is probably an important factor.

## Clearing the mess




• The record is  $2000 \text{ cm}^3$  coke bottle = 5.5 m geyser

• Our results 250 cm<sup>3</sup> coke bottle = 1.7 m geyser

### If we had more time .....

• Check if making the hole where the coke leaves the bottle smaller makes the geyser higher



